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Abstract. Increasing bioprocess requirements for monitoring, control and identification of the process state 
require optimizing the performance and time to avoid disruption that may affect the success of the micro-
organism cultivation process. Continuous estimation of the bioprocess parameters during fermentation of yeast 
Saccharomyces cerevisiae is the necessity to use models of cellular metabolism that enable to provide the 
essential information about the ongoing intracellular activities of biochemical bioprocesses and their impact on 
the quality of the desired product (ethanol) production process. It would bring significant benefits for 
experimenters and producers of biotechnological devices more objectively to determine the feedrate profile of 
substrates, nutrients and salts which must be supplied at a given time. A conceptual framework of the bioprocess 
algorithm has been developed on the basis of summarizing the current views in literature on system biology and 
process engineering linking capabilities. The developed approach gives a possibility early enough to send control 
commands for actuators to stabilize the bioprocess state and predict the future course of the procedure in order to 
ensure a high quality production process of ethanol. 
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Introduction 

Nowadays with increasing development of biotechnology industry it is necessary to accurately 
monitor and control the biotechnological process to produce the target product of the highest quality 
and more profitable. Using less expensive raw materials, finding the ways for by-product 
minimization, tending to reach the theoretical maximal concentration of the desired product in 
fermentation, ensuring the optimal environment conditions (pH level, pO2 (partial pressure of 
dissolved oxygen) temperature) for yeast Saccharomyces cerevisiae effective growing, these are only 
a few aspects of the biotechnologist aims to be resolved.  

Reliable sensors to measure intercellular activities are rarely available, making the bioprocess 
states very difficult to characterise. Only the basic process variables (culture weight, temperature, pH, 
pO2, CO2 and O2 off gas analysis, turbidity) can be directly measured online [1]. Accurate process 
models are rarely available due to the complexity of the biochemical processes. There is the lack of 
detail information in biochemical level, how the mutual response of metabolites ensure the vital 
functions as cell growing, regeneration, maintain their structures and rely on external influences. 

Most described bioreactor control algorithms in the literature are PID control, model reference 
control, adaptive control, model predictive control, neural network control, fuzzy control and hybrid 
control [2-5]. In spite of the development of many advanced control algorithms, nearly 50 % of the 
controllers in the industrial field are using PID controllers [6]. This control is based on the feedback 
principle – the deviations of measurements are used as basis to perform quite accurate actions on 
deviations increase. The aim of PID control is to minimize deviations of the setpoint value. The main 
advantage of PID control is its simplicity, robustness and successful practical applications. 

The aim of the paper is to discuss the opportunities to use a yeast metabolic model to improve the 
control of the bioreactor in the bioethanol production process. Therefore, with increasing availability 
of the new quantitative “omic” data and genome-scale metabolic models of yeast [7; 8] scientists 
search for solutions of effective application of these data of the bioreactor control algorithm.  

Materials and methods 

The last few years have seen substantial increase in fuel prices and various nations are trying to 
find alternatives to the fuel addiction. One of these alternatives is using biofuel “bioethanol”. The 
technology to produce bioethanol from sugars is through the fermentation process of bioreactor 
whereby microorganisms such as yeast S. cerevisiae have the ability to convert sugar through their 
metabolism to the form of bioethanol. But industrial bioethanol producing is a complex process. It is 
essential to ensure optimal environment conditions (temperature, pH, pO2), appropriate nutrients, 
proper yeast strains and optimal mass transfer rate of the bioreactor liquid choosing an appropriate 
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bioreactor construction (stirrer type, bioreactor vessel volume and design) [6]. Ethanol production by 
yeast S. cerevisiae is a well-studied application in biotechnology. Although near maximal 
concentration of ethanol is naturally produced by S. cerevisiae, this process is severely hampered by 
the stress caused by the high concentration of ethanol [9]. Currently the main strategies how to 
optimize the ethanol production process is trying to provide for all these affecting factors optimal 
conditions in action. 

The described approach in this paper is that bioprocess control can be described in three levels 
(see Fig 1). The 1st level contains a control system for carrying out the parameters maintaining the 
given range and it is carried out by controlling devices (heater, peristaltic pumps, stirrer, O2 and CO2 
flow controller). If the deviation of the parameter, for instance pO2 value, is decreasing then the 
controller tries to run a control command to stabilize the state, change the stirrer rotation speed or start 
the oxygen enrichment process. PID controller is used for this control level most. One of the major 
difficulties for PID effective use is to set the appropriate PID controller P, I, D coefficients to be 
applied to a particular situation. Sometimes these parameters are necessary to change several times in 
microorganism fermentation because in the growth of the microorganism in different stages of the 
process dramatic changes are observed [10]. 
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Fig. 1. Levels of bioreactor control 

The 2nd level is more advanced that additionally warns of deviations in the process and predicts 
the development. Mostly the control algorithms of the current level are based on the model reference 
control, adaptive control, model predictive control and hybrid control. The quality of the model and 
above all its structure must correspond to the objective for which the model was built. The model 
could be used to detect deviations in the functioning of the process and could be used as a prediction 
tool to stabilize the fermentation process state early enough while the process is not left in an 
irreversible situation. The model predictive control has become a popular topic in the recent years [11-
14]. Furthermore, the fact should be taken into account that more complex models require more 
information and it is more difficult to evaluate them and apply in automatic control systems for 
ethanol production-scale bioreactors. 

The 3rd level additionally estimates the state of the micro-organism using a metabolic model. This 
allows controlling on a more detailed level (metabolome, fluxome) the process according to the 
intracellular changes of reactions fluxes, but there is a need to find a connection point between the real 
measured data of the sensors and metabolic model provided information. Only limited number 
variables of the metabolic model are observed in close correlation with the currently examined 
chemical, physical principles. With the aim to prevent this situation mathematical methods are used, 
which allow to detect the “hidden” information from the on-line data and thereby find a correlation 
with many opportunities for the off-line data [15]. 

 Historically, bioprocess mathematical modelling was based on simple cell models where the 
biological system is inspected as a catalyst for the conversation of substrates into products without 
futher consideration about the intracellular processes. The intracellular processes of cells are viewed as 
“black-boxes” [16]. Mostly interactions between the bioreactor extracellular environment and 
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intracellular cells metabolites and enzymes as catalysers of reactions are generally ignored. Sometimes 
descriptive models are available using measurements of the optical density of the biomass, the 
substrate and product concentration changes. These models in most cases describe the microbial 
growth rate and product formation.  

During fermentation it is important not only to follow the measured on-line or off-line parameter 
changes in the bioreactor, but also determine the actual physiological state of the micro-organism. The 
qualitative estimation of the micro-organism state [17] depends on the available measurements of pO2, 
pH, temperature (T), off-gas (Fig. 2.).  

 

Fig. 2. Estimatition performance of bioprocess [17] 

More detailed level information provides concentration measurements of products, substrates or 
intercellular metabolites (IM). Consequently, if a more detailed measurement level is supplied then the 
model/estimator complexity increases and the model performance more accurately describes the state 
of the micro-organism at a given time. 

Results and discussion 

The developed solution for more efficient link between the yeast metabolic model and the 
measurements of the bioreactor is applicable in literature more, and the flux balance analysis (FBA) 
approach is more described [18-21]. FBA is a modelling approach based on the constraints of a 
metabolic network. It is applicable method for the determination of the metabolic flux distribution in 
undetermined systems. The main source of constraints is the stoichiometric matrix which describes 
precisely which substrates at which quantity are necessary to be supplied to create the desired product. 
Fluxes are determined by the linear programming method where the selected objective criteria (target 
reaction flux) are optimized taking into account all cell physiological state constraints. 

The next described solution for yeast fermentation optimization is using the elementary flux mode 
(EFM) approach [22-24]. EFM is a mathematical tool for metabolic pathway analysis. It decomposes a 
metabolic network into elementary modes which are the simplest paths able to operate in steady-state. 
The elementary mode includes the pathway from the substrate uptake to the desired product formation. 
Some authors have already presented applications of EFM [25-28] and showed experimental results. 
The problem is mentioned that the size of elementary modes dramatically increases with the size of the 
model [29]. 

The third described approach is the dynamic flux balance analysis [30; 31]. The dynamic flux 
balance analysis (DFBA) provides modelling of detailed metabolic models in the absence of enzyme 
kinetics and substantial information about intracellular regulatory processes. The method is based on 
the reasonable assumption that metabolite concentrations rapidly equilibrate in response to 
extracellular perturbations. A flux balance description of intracellular metabolism combined with 
dynamic mass balances on extracellular substrates and products allows the prediction of the cellular 
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behaviour as the extracellular environment changes with time [31]. DFBA may be used to generate 
dynamic predictions of extracellular metabolite profiles.  

Examining the literature sources and analysing the possibility to efficiently provide optimal 
external environment conditions in the yeast fermentation process, a conceptual framework is 
developed (Fig. 3) that includes a dynamic metabolic model of yeast in the bioreactor control 
algorithm. This concept includes the bioreactor monitoring of the measured on-line and off-line data. 
The obtained sensor data are used in the mathematical model in the form of differential equations. A 
dynamic metabolic model of yeast has been used in addition, that has much more detailed level 
information for ensuring more efficient environment conditions on the microorganism state at a given 
time. 
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Fig. 3. Application of metabolic model in bioprocess control algorithm (adapted from [15]) 

The simulation of the dynamic metabolic model gives more advanced information (fluxome level) 
about deviation from the reference model at the current time. Using the outlined above FBA, EFM or 
DFBA approach into “simulation of the dynamic metabolic model” part of conceptual framework 
could be opportunities to dynamically generate the necessary feeding profile and would be a 
possibility to directly supply the yeast with actual nutrients, salts as calculated predictions with the 
metabolic model. Also it is needed be taken into account that simultaneously must be ensured the 
maximum product (ethanol) formation rate, minimized by-products (acetaldehyde) formation and the 
yeast would have high osmotic stress resistance to high ethanol concentrations. This approach 
provides prediction of the fermentation process and gives chances to eliminate the possible risks of 
deviations early enough. The obtained data are used for the process control system that automatically 
chooses advanced control modes for different fermentation process states. The advanced control 
modes involve specific control actions of devices (heater, peristaltic pumps, stirrer, O2 and CO2 flow 
controller) depending on the given process conditions.  

Conclusions 

The main aim of the work was making research in methods and possible solutions for the 
bioreactor optimal control algorithm that gives an opportunity to link the yeast Saccharomyces 

cerevisiae metabolic model with the measurable data in the bioreactor. Many methodologies have 
been published for genome-scale models (reconstructions) data analysis to obtain more detailed 
information on the cells intracellular level. But only some of them (FBA, EFM, DFBA) have showed 
good opportunities for implementation in the bioprocess control algorithm. It would allow on a more 
detailed level (metabolome, fluxome) to control the process according to the intracellular changes of 
reaction fluxes, generate dynamic substrate feedrate profiles, estimate the physiological state of the 
yeast and early enough change the extracellular environment conditions according to the metabolic 
model predictions using control devices (heater, peristaltic pumps, stirrer, O2 and CO2 flow controller).  

A conceptual framework has been developed on the basis of summarizing the current views in 
literature on system biology and process engineering linking capabilities. It is planned to develop this 
approach on a more detailed level and demonstrate the results on real practical experiments of yeast 
fermentation using genome-scale models as basis for advanced control and make the framework 
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validation. Future development of the bioreactor control algorithm will depend on further progress in 
system biology and process engineering industries.  

Acknowledgements 

The paper was written by financial support of European Structural Fund – Project “Establishment 
of Latvia interdisciplinary interuniversity scientific group of systems biology” – realized by Latvia 
University of Agriculture (contract no. 2009/0207/1DP/1.1.1.2.0/09/IPIA/VIAA/128). 

References 

1. Rudnitskaya A., Legin A. Sensor systems, electronic tongues and electronic noses, for the 
monitoring of biotechnological processes. Journal of industrial microbiology & biotechnology, 
vol. 35, May. 2008, pp. 443-451. 

2. Alford J. Bioprocess control: Advances and challenges. Computers & Chemical Engineering, vol. 
30, Sep. 2006, pp. 1464-1475. 

3. Yamuna Rani K., Ramachandra Rao V.S. Control of fermenters – a review, Bioprocess 
Engineering, vol. 21, 1999, p. 77. 

4. Zulkeflee S.A., Aziz N., Campus E., Ampangan S., Tebal N. Control Implementation in 
Bioprocess System : A Review. Chemical Engineering, 2007, pp. 798-804. 

5. Schügerl K. Progress in monitoring, modeling and control of bioprocesses during the last 20 
years. Journal of biotechnology, vol. 85, Mar. 2001, pp. 149-73. 

6. Lubbert A., Jorgensen Bay S. Bioreactor performance: a more scientific approach for practice. 
Journal of Biotechnology, vol. 85, 2001, pp. 181-212. 

7. Duarte N.C., Herrgård M.J., Palsson B.Ø. Reconstruction and Validation of Saccharomyces 
cerevisiae iND750 , a Fully Compartmentalized Genome-Scale Metabolic Model. Genome 
Research, 2004, pp. 1298-1309. 

8. Nookaew I., Jewett M.C., Meechai A., Thammarongtham C., Laoteng K., Cheevadhanarak S., 
Nielsen J., Bhumiratana S. The genome-scale metabolic model iIN800 of Saccharomyces 
cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Systems Biology, vol. 2, 
2008, p. 71. 

9. Petranovic D., Vemuri G.N. Impact of yeast systems biology on industrial biotechnology. Journal 
of biotechnology, vol. 144, Nov. 2009, pp. 204-11. 

10. Lee J., Lee S.Y., Park S., Middelberg P. Control of fed-batch fermentations. Biotechnology 
advances, vol. 17, Apr. 1999, pp. 29-48. 

11. Costa C., Meleiro L. C., Maciel Filho R. Non-linear predictive control of an extractive alcoholic 
fermentation process. Process Biochemistry, vol. 38, Dec. 2002, pp. 743-750. 

12. Azimzadeh F., Galán O., Romagnoli J. On-line optimal trajectory control for a fermentation 
process using multi-linear models. Computers & Chemical Engineering, vol. 25, Jan. 2001, pp. 
15-26. 

13. Ashoori A., Moshiri B., Khaki-Sedigh A., Bakhtiari M.R. Optimal control of a nonlinear fed-
batch fermentation process using model predictive approach. Journal of Process Control, vol. 19, 
Jul. 2009, pp. 1162-1173. 

14. Ławryńczuk M. Modelling and nonlinear predictive control of a yeast fermentation biochemical 
reactor using neural networks. Chemical Engineering Journal, vol. 145, Dec. 2008, pp. 290-307. 

15. Clementschitsch F., Bayer K. Improvement of bioprocess monitoring: development of novel 
concepts. Microbial cell factories, vol. 5, Jan. 2006, p. 19. 

16. Teixeira A.P., Carinhas N., Dias J.M.L., Cruz P., Alves P.M., Carrondo M.J.T., Oliveira R. 
Hybrid semi-parametric mathematical systems: bridging the gap between systems biology and 
process engineering. Journal of biotechnology, vol. 132, Dec. 2007, pp. 418-433. 

17. Komives C., Parker R.S. Bioreactor state estimation and control. Current Opinion in 
Biotechnology, vol. 14, Oct. 2003, pp. 468-474. 

18. Kauffman K.J., Prakash P., Edwards J.S. Advances in flux balance analysis. Current Opinion in 
Biotechnology, vol. 14, Oct. 2003, pp. 491-496. 

19. Park J.M., Kim T.Y., Lee S.Y. Constraints-based genome-scale metabolic simulation for systems 
metabolic engineering. Biotechnology advances, vol. 27, 2009, pp. 979-88. 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 26.-27.05.2011. 

 

 102

20. Cox S.J., Shalel Levanon S., Bennett G.N., San K.Y. Genetically constrained metabolic flux 
analysis. Metabolic engineering, vol. 7, 2005, pp. 445-56. 

21. Mahadevan R., Schilling C.H. The effects of alternate optimal solutions in constraint-based 
genome-scale metabolic models. Metabolic Engineering, vol. 5, Oct. 2003, pp. 264-276. 

22. Gagneur J., Klamt S. Computation of elementary modes: a unifying framework and the new 
binary approach. BMC bioinformatics, vol. 5, Jan. 2004, p. 175. 

23. Terzer M., J. Stelling. Elementary flux modes – state-of-the-art implementation and scope of 
application. BMC Systems Biology, vol. 1, 2007, p. P2. 

24. Jungers R., Zamorano F., Blondel V., Wouwer A. A fast algorithm for computing a minimal 
decomposition of a metabolic flux vector in terms of elementary flux vectors. Proceedings of 
Mathmod 2009, Wien, 2009. 

25. Hoffmann S., Hoppe A., Holzhütter H. G. Composition of metabolic flux distributions by 
functionally interpretable minimal flux modes (MinModes). Genome informatics. International 
Conference on Genome Informatics, vol. 17, Jan. 2006, pp. 195-207. 

26. Schwartz J. M., Kanehisa M. Quantitative elementary mode analysis of metabolic pathways: the 
example of yeast glycolysis. BMC bioinformatics, vol. 7, Jan. 2006, p. 186. 

27. Teixeira A.P., Alves C., Alves P.M., Carrondo M.J.T., Oliveira R. Hybrid elementary flux 
analysis/nonparametric modeling: application for bioprocess control. BMC bioinformatics, vol. 8, 
Jan. 2007, p. 30. 

28. Xu X. Elementary Flux Mode Analysis for Optimized Ethanol Yield in Anaerobic Fermentation 
of Glucose with Saccharomyces cerevisiae. Chinese Journal of Chemical Engineering, vol. 16, 
Feb. 2008, pp. 135-142. 

29. Yeung M., Thiele I., Palsson B.O. Estimation of the number of extreme pathways for metabolic 
networks. BMC bioinformatics, vol. 8, Jan. 2007, p. 363. 

30. Hanly T.J., Henson M. Dynamic flux balance modeling of microbial co-cultures for efficient 
batch fermentation of glucose and xylose mixtures. Biotechnology and bioengineering, vol. 108, 
Sep. 2010, pp. 376-385. 

31. Hjersted J.L., Henson M. Optimization of fed-batch Saccharomyces cerevisiae fermentation using 
dynamic flux balance models. Biotechnology progress, vol. 22, 2006, pp. 1239-1248.  


