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Abstract. The paper presents practical and theoretical results acquired during a scientific project addressing 

multi-robot control and management challenges with possible application in greenhouse automation solutions. 

The main focus of the paper is path planning of mobile robots addressing computation time and memory 

constraints in embedded robotic systems. The paper presents an analysis that is based on practically experienced 

cases and proposes modifications of the discussed RRT-based methods in order to ensure better quality of the 

planning result as well as saved time in specific cases. A key factor of the compareson analysis is time and 

memory usage that usually are limited in embedded devices like small scale mobile robots. The paper also 

presents experiment results collected using a prototype robotic system. 

Keywords: embedded planning, indoor robotics, real time path planning. 

Introduction 

Path planning is one of the central tasks to be solved in mobile robotics. Along with the method 

groups like Potential field planning [1] and Combinatorial planning [2], Rapidly Exploring Random 

Tree [3] (RRT) planning has found its application in mobile robotics. While it does not ensure optimal 

solutions and does not guarantee solution at all it provides sufficient performance [4] for most 

applications in mobile robotics. 

Since first implementations RRT planning has experienced a variety of modifications [4] that 

differ with implementations of particular algorithm steps and provide different overall performance 

under particular constraints [5]. However, in real applications the robotic systems are operating under 

memory, computation and real time constraints, which, as a consequence, pose limitations on the used 

algorithms and techniques. Memory limitation is not a critical problem since as shown later usually a 

raw RRT plan does not require storing more than few hundreds to few thousands planning tree 

vertexes in memory while time and computing power limitations are more sensitive especially for 

embedded robotic systems. Within this paper we propose a slight modification of the well-known RRT 

algorithms focusing on space search under memory and time limitations.  

The paper is organized as follows: Section II gives a brief overview of the RRT algorithm and 

related work regarding increase of RRT modifications, Section III presents the proposed modification 

RRT-Wave, Section IV provides experimental evaluation of the proposed method, Section VI gives 

conclusions and insight of future work. 

Related work 

The RRT was introduced as a planning technique for wide range of motion planning problems [3], 

which can accommodate particular kinematic or geometric constraints of a given system. The RRT 

“base” algorithm is outlined in Figure 2. The planning goal is to generate a path from the initial 

configuration q0 to the goal configuration qg. At each iteration i, a random configuration qrnd is 

selected. Then the closest configuration qc from the graph is found and algorithm tries to extend the 

planning graph towards qrnd, by adding an arc from qc towards qrnd with length d. Thereby a new 

configuration qi is added to the planning graph. This step is depicted in Figure 1. The planning stops 

when the newly added configuration qi is in a predefined proximity from the goal configuration qg. A 

number of variations of the RRT exist [4], which provide better performance under particular 

constraints [5]. There are a number of other modifications of the initial algorithm for addressing 

different application domains. Hereby we consider RRT-Connect version of this algorithm group [6].  

As indicated in [7] the sampling-based planning techniques are well applicable in wide variety of 

domains, but rapidly can become ineffective if the planning problem is specified by complex dynamic 

or kinematic constraints that results in computational overheads slowing down the planner and 

increasing the overall planning time. The [7] presents an approach that employs heuristics in 

combination with greedy search technique, which results in better performance over complex and 
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constraint parts of search spaces such as narrow passages, where alternative search techniques are 

combined.  
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Fig. 1. RRT extending towards qrnd 

Algorithm 1: Base RRT 

RRTmain() 
1:Tree = q.0 

2:q.rnd = q.0 

3:while Distance (q.rnd , q.g) <ErrTolerance do 

4:  q.target = SampleTarget() 

5:  q.nearest = NearestVertex (Tree , q.target) 

6:  q.rnd = ExtendTowards (q.nearest,q.target) 

7:  Tree.add(q.rnd)  

8: end while 
9: return Trajectory (Tree,q.rnd)  

SampleTarget() 

1: if Rand() < GoalSamplingProb then 

2:  return q.g 

3: else 
4:  return RandomConfiguration() 

5: end if 

Fig. 2. RRT “base” algorithm [10] 

As indicated in [8] the RRT planning technique, when applied in domains with complex 

kinodynamic constraints, may be computationally costly due to the extend step, which requires 

computation of kinodynamic equation for each of possible planning tree vertex candidates. The [8] 

proposes to apply adaptive sampling strategy RG-RRT, which takes into account local reachability, as 

defined by differential constraints, while building the tree. The proposed approach is based on 

observation that random selection of points and their checking on possible collisions is much faster 

than adding extra nodes to the planning tree, which adds both, time cost by having a larger tree. 

Thereby, adding kinematic obstacles and checking collisions with them on randomly sampled vertex 

candidates reduce the necessary time for generation as well as the size of the planning tree.  

The [9] proposes heuristically guided RRT or hRRT. This method bias the search toward low cost 

paths using quality measure based on the cost of the path from the root node and estimation of the 

optimal cost to the goal. Unfortunately, as indicated in [10], this approach has been verified only on 

rather simple problems with discrete cost states and limited scalability and performance in complex 

environments. To overcome the mentioned drawbacks the [10] proposes T-RRT with extension of cost 

function from discrete to continuous values space guiding the sampling into less costly regions 

allowing to apply the technique in more complex domains like multidimensional robot motion 

planning.  

According to the RRT “base” algorithm, the main effort is necessary for collision detection and 

the nearest neighbour search, which can be reduced by application of massive parallel computing or 

optimized searching techniques [11; 12]. 

As an alternative this paper presents a sampling space limitation approach and provides 

experimental analysis over different practically observed situations in mobile robotics domain.  

Materials and methods 

While according to reports the RRT and its variants are well suited for wide variety of robot 

motion planning, within our research we faced several rather simple practical planning situations, 
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where the used RRT-Connect (a slight modification of the “base” RRT) [3; 6] failed a number of times 

before delivered a consistent plan. Two of them are presented in the following figures: 

  
A – planning area 24m x 13m with a single 

large obstacle 

A– planning area 24m x 13m with a single large 

obstacle planning result – failure. 

  

B – Planning area in small warehouse 
B – Planning area in small warehouse with 

planning result – failure. 

Fig. 3. RRT-Connect results on practical planning problems in 2D space 

During practical experiments we noticed that the planner since it produces a planning tree tends to 

be weak in cases that could be classified as inverted bug traps. A good example of such a situation is 

depicted in Figure 3, example B, where there is a free space pocket surrounded by obstacles with close 

exit to outer environment. As a result the planner in many cases rapidly exits the pocket and cannot 

return to pocket exploration, thereby leaving the pocked unexplored and goal unreached. The situation 

can be avoided by significant increasing of the samples generated. However, in this case the 

effectiveness of the planner is reduced according to its time complexity – O(logn), where n – number 

of vertexes [11; 12]. Thereby, to increase the effectiveness of the planner, it is necessary to make it 

more focused on reaching the goal in order to limit the generation of new vertex candidates. To do so, 

we propose to start sampling within the area in close proximity from the goal and starting 

configuration – an initial sampling space that includes starting and goal configurations. When the pre-

set sampling density is reached the sampling area is widened. Thereby, the sampling like a wave 

flushes over the whole planning space. The modified algorithm is outlined in Fig 4. 

Algorithm 1: Base RRT 

RRTmain() 
1:Tree = q.0 

2:q.rnd = q.0 

3: WaveIndex = 0 

4:while Distance (q.rnd , q.g) < ErrTolerance do 

5:  q.target = SampleTarget(Tree.count, WaveIndex) 

6:  q.nearest = NearestVertex (Tree , q.target) 

7:  q.rnd = ExtendTowards (q.nearest,q.target) 

8:  Tree.add(q.rnd)  

9: end while 

10: return Trajectory (Tree,q.rnd)  

SampleTarget (Tree.count, WaveIndex) 
1: Area = Rectangele(0,0,0,0) //xmin,ymin,xmax,ymax 

2: if Rand() < GoalSamplingProb then 

3:  return q.g 

4: else  

5: Area = AreaCalculation(Tree.count,WaveIndex) 

6:  return RandomConfiguration(Area) 

7: end if 

Fig. 4. RRT “base” algorithm [10] 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 29.-30.05.2014. 

 

369 

The main difference is the target generation procedure SampleTarget, where a sampling area is 

calculated and only then the sample is being generated within the area. Thereby, the key is the 

sampling area calculation function. Within the paper we propose to drive the sampling process by 

increasing the sampling area by a predefined step, when the number of samples within the area has 

reached the previously predefined maximum value. At the same time the maximum number of 

samples is also increased by a predefined value. Thereby, we get an effect of wave. Let us have the 

planning area 100 x 100 units, maximum allowed samples per wave 10000 and the area edge length 

increment of 25 units every time the maximum allowed number of samples is reached. It can be easily 

noticed that by each wave the area increases quadratically while the maximum number of samples 

linearly. The effect is depicted in the graph in Fig. 5. 

Thereby, the total sampling density is decreasing by each wave and, what is more important, the 

density is higher if the area unit is closer to the initial planning area. It means that the planner pays 

more attention to closer areas and less to more distant ones. While theoretically such an approach 

could lead to a local minimum, the practical experiments show that the planning tasks that require 

crossing the whole area through complex labyrinth with local minima points are very rare. 
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Fig. 5. Sampling density (samples per area unit) 

Results and discussions 

In order to determine the effectiveness of the proposed modifications, the modified RRT-Wave 

and the initial RRT-Connect are compared in a number of planning tasks. For experimental purposes 

both, real and simulated environments were used. The real ones were acquired by the mobile robotic 

system based on iRobot Roomba 560 vacuum cleaner controlled by IntelAtom based computer, which 

implements all the necessary planning and motion control routines [13]. The used robotic system is 

depicted in Fig. 6. In figure Fig. 7 the used environments are appropriately marked. Each of the 

algorithms is examined with different sampling probability distribution (probability of goal selection 

as target) and run 20 times for the same situation, thus providing an average number of vertices, time 

and success rate values. The experiments were conducted on Intel iCore3 based PC with appropriate 

UI developed in VisualStudio 2010. The actual number of ms spent for planning is only for 

comparison purposes because of specifics of every individual implementation. The proposed RRT-

Wave is also implemented for use on RaspberryPI based mobile robotic system.  

Table 1 

Empty area 24.0 m x 13.0 m 

RRT-Connect RRT-Wave 

Probability 
Time in ms 

Number of 

vertexes 
Time in ms 

Number of 

vertexes 

p = 0.1 14.00 171.70 24.00 216.00 

p = 0.3 12.40 119.00 10.40 129.20 

p = 0.6 5.70 73.70 10.60 72.10 

p = 0.9 7.40 60.50 6.70 60.00 
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Table 2 

U-Shape 24.0 m x 13.0 m 

RRT-Connect RRT-Wave 

Probability 
Time in ms 

Number of 

vertexes 
Time in ms 

Number of 

vertexes 

p = 0.1 541.70 598.90 2053.70 1477.20 

p = 0.3 731.70 717.80 2234.90 1530.70 

p = 0.6 817.10 710.20 3201.40 1545.90 

p = 0.9 2051.50 702.80 5881.00 1229.00 

Table 3 

Practical situation – 1, 8.2 m x 12.0 m 

RRT-Connect RRT-Wave 

Probability 
Time in ms 

Number of 

vertexes 

Success 

rate 
Time in ms 

Number of 

vertexes 

Success 

rate 

p = 0.1 359.17 401.17 60 % 1 329.90 1 262.60 100 % 

p = 0.3 1 243.80 782.80 50 % 567.10 514.90 100 % 

p = 0.6 2 002.00 924.80 100 % 2 283.33 762.67 90 % 

p = 0.9 1 054.86 343.14 70 % 465.67 191.50 60 % 

Table 4 

Practical situation – 2, 8.2 m x 12.0 m 

RRT-Connect RRT-Wave 

Probability 
Time in ms 

Number of 

vertexes 

Success 

rate 
Time in ms 

Number of 

vertexes 

Success 

rate 

p = 0.1 239.2 509.90 100 % 44.7 64.6 100 % 

p = 0.3 348.40 588.10 100 % 50.4 72.3 100 % 

p = 0.6 470.10 457.70 100 % 67.4 65.5 100 % 

p = 0.9 1056.22 351.00 90 % 223.6 81.2 100 % 

Table 5 

Simulated situation – 3, 14.5 m x 14.5 m (Warehouse) 

RRT-Connect RRT-Wave 

Probability 
Time in ms 

Number of 

vertexes 

Success 

rate 
Time in ms 

Number of 

vertexes 

Success 

rate 

p = 0.1 6407.4 558.6 100 % 5149.4 336.6 100 % 

p = 0.3 7516.6 496.1 100 % 6433.2 373.7 100 % 

p = 0.6 11259.9 585.8 100 % 6599.7 300.7 100 % 

p = 0.9 21336.8 485.7 100 % 9874.8 243.6 100 % 

 

Fig. 6. Autonomous mobile robotic system for experiment data acquireing 
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The used planning areas are depicted in the following figures: 

 
A – Empty space – Simulated environment 

 
B – U-Shape– Simulated environment 

 
C – Practical Situation 1– Real environment 

 
D – Practical Situation 2– Real environment 

 
E – Practical Situation 3 (Warehouse) – Simulated environment 

Fig. 7. Used experimental environments 

Conclusions and discussions 

1. The proposed RRT planner modification RRT-Wave allows focusing the planner on the planning 

goal by incrementally increasing the point sampling area at the same time increasing the total 

allowed samples, which allows reducing the number of generated vertexes and thus reduces the 

total planning time.  

2. Thereby, the sampling density is decreasing, i.e., the number of total samples is the same for each 

area increment, which is added to the already existing samples thus the sampling density closer to 

the goal and start is higher than in more distant sectors.  

3. As a consequence the proposed planner is more appropriate for use in embedded systems, which 

usually are very sensitive to extra memory and the computation time needed to solve the planning 

problems. Thereby, it is well suited for application in service robots for indoor use like 

greenhouses.  

4. This slight modification allows increasing the overall planning effectiveness in terms of a smaller 

number of generated vertices and as a consequence less time spent for planning. The experimental 
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results show that the classical tests on u-shape still are challenging while more practical 

experimental examples clearly show higher performance of the RRT-Wave both, in terms of the 

generated vertices and the planning time. 
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