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Abstract. The stability of the equilibrium configuration for the open segment of the elastic pipeline, conveying 

inertia fluid, is under consideration. To do this, the fundamental laws of the Euler Dynamics are used, formulated 

for arbitrary open systems. It is strictly shown that the impact at the end of the pipeline construction by the 

pressing force and the reactive force of the recoil jet are identical. As a consequence of this identity is shown the 

possibility of the non-rectilinear equilibrium configuration of the elastic pipeline existence. Such type of static 

configuration for the open segment of the pipe depends on the boundary conditions and may appear if the speed 

of the stream reaches to the critical value. The reactive force of the jet for the critical speed of the flow is equal 

to the critical value of the compressive force at which the rectilinear configuration of the rod system becomes 

unstable according to the classical scenario. This proves that the mechanisms of stability lose rectilinear 

configuration of the elastic pipe, conveying inertial flow under the influence at the end of the pressing force and 

the recoil force of the jet being the same.  
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Introduction 

Currently, at the determination of stability conditions of equilibrium configurations of the open 

pipeline systems the role of the recoil force of the jet flowing out of the pipe remains unclear. Several 

problems on vibrations and stability of the rectilinear configurations of the pipeline systems are 

reviewed in [1]. However, the Feodosyev comments for the solutions of these problems do not give 

clear explanation whether the squeezing of the open pipeline by the recoil force of the jet is the main 

cause the of stability loss of its straight equilibrium configuration. Or some other physical phenomena 

lead to the loss of stability of the open pipeline segment? 

Uncertainty about the significance of the influence of the recoil force of the jet on the properties 

of the open pipeline system is reflected in very many studies of stability of the pipeline segment, 

through which the inertia fluid is flowing. The studies of the deformable straight cantilever pipe 

vibrations with the inertial fluid flow were presented in literature [2; 3]. In these works the influence 

of the recoil force of the jet at the pipe face end is absolutely ignored. The validity of this view is 

questionable, as since 1966 until now, a satisfactory explanation of the paradoxical results of the 

theoretical modeling of the dynamics of the cantilever pipe, conveying heavy fluid is not offered [1; 4-

7]. Applied relevance of the proposed studies is identified by the need to ensure trouble-free operation 

of pipeline systems in the light of the prospects of mining from the bottom of the seas and oceans, as 

well as a large-scale operation currently performed in a network of underwater pipelines. 

In mechanics, the pipeline systems are considered as elongated structures consisting of hollow 

thin rods along which a given flow rate is provided due to the energy of external devices to transported 

inertial flow. Longitudinal flow rate is a parameter, which is affordable to variation, affecting the 

stability of the pipeline system. The presence of the pumping device provides a nonconservative 

property to the pipeline systems [1; 4; 7]. 

Most mathematical models of pipe systems conveying the inertial fluid flow, described in 

literature, are focused solely on the numerical analysis [7; 8]. There is lack of analytical results in the 

branches of mechanics, studying vibrations and stability of pipelines with the inertial fluid flow. In 

this regard, there are inconsistencies and contradictions in the interpretation of the theoretical study of 

the interaction between an elastic inertia pipe and the inertia flow [4-6; 8; 9]. 

An open pipeline segment 

Consider the model of the pipeline system segment shown in Fig. 1. The kinematics of the system 

allows only one degree of freedom. So we hope to obtain the transparent analytical results [10]. The 

configuration of the system is completely determined by the angle valueϕ . The system is composed 
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of two thin hollow flow guiding rods with the interior channels of the cross section area F . An 

incompressible inertia fluid with density ρ  is supplied in the rods by a pump H. 

 

Fig. 1. Pipeline with fixed direction of fluid leakage 

The rods are closely connected by an elastic cylindrical hinge B. A flow guiding rod of mass 

1m and length 1l  connects the hinges A and B. The axis of the rod coincides with the direction of the 

mobile unit vector 1p . This rod is pinned in the fixed elastic cylindrical hinge A. A rod, connecting 

the hinges B and D, is of length 2l  and mass 2m . The end D of this rod is pinned in a movable elastic 

cylindrical hinge D. The hinge D is allowed to move along the unit vector i  (Fig. 1). 

The axis of the rod, connecting the hinges B and D, is directed along the movable unit vector 2p . 

The hole area in each hinge of the system, through which the liquid enters into the rods, shall be equal 

to the cross sectional area of the interior channels of the flow guiding rods. Fluid is injected into the 

system from outside through the hinge A. In the hinge D fluid leaves the rod system along a fixed 

direction i . A virtual compressive force iP P−=  is applied to the hinge D. It plays an auxiliary role 

for the analysis of the pipeline system stability. 

The governing relations for the elastic hinges 

Moments of the connections have elastic components, orthogonal to the plane of the drawing as 

well as components to prevent the displacements of the system out of this plane. 
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Let us denote by Aµ  the bending stiffness of the elastic element in the hinge A. For the elastic 

component of the moment AM , acting on the rod, connecting the hinges A and B, we use the 

constitutive relation 1

* piMM ×−=− AAA µ . This relation is linear for small deviations of the system 

from a straight configuration. For the elastic component of the moment BM , affecting on the rod 

between the hinges A and B, we use a relation 21

* ppMM ×=− BBB µ , where Bµ  is the bending 

stiffness of the elastic element in the hinge B. To describe the elastic component of the torque impact 

on the rod connecting the hinges B and D, from the side of the hinge D, assume the relation 

ipMM ×=− 2

*

DDD µ . Here Dµ  is the bending stiffness of the elastic element in the hinge D. It is 

obviously ipp 122211 lll =+ , where, 12l  is a distance between the hinges A and D. For the moment 

impacts in the hinges, it is convenient to use the governing relations in the following form: 
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Nonconservatism 

There is a constant inflow of energy from an external source in the considered system. Assume 

the pump H provides a constant flow of fluid q  in the hinge A. Let us denote by v  the fluid speed 

1
2 
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through the hole with the area F in the hinge A. This speed is related to the fluid flow rate in the hinge 

A by the relation: 

 Fvq ρ= . (2) 

As q is a constant, as well as the cross-sectional areas of the internal channels flow guiding rods, 

the value of a longitudinal flow speed remains constant with respect to the axis of each rod for any 

configuration of the deformable system. 

The laws of motion for an open system 

In accordance to the fundamental laws of the Euler dynamics, formulated for the bodies of 

arbitrary nature in [11; 12], we can write the following relations 
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 (3) 

Vectors AN , BN , DN , AM , BM , DM  in (3) are the force and moment reactions of hinge 

connections of the rod system. The relations (3) contain the vector measures of motion:
AB

1K  that is 

the rectilinear (or kinetic) momentum of a flow guiding rod with the inertia fluid, connecting the 

hinges A and B; 
AB

A,2K  is the angular momentum with respect to the point A of this rod; 
BD

1K and 

BD

A,2K  are similar values for the rod connecting the hinges B and D; 
BD

A

AB

AA ,2,2,2 KKK +=
Σ

 is the total 

angular momentum of the open rod system with respect to the point A. 

Reactive terms 

The reactive terms are included in (3) because each open rod exchanges the mass with its 

surrounding. The term 
AB

1k  is an inflow rate of the rectilinear momentum into the rod connecting the 

hinges A and B; 
ABA,

2k  is an inflow rate of the angular momentum with respect to the point A into the 

rod connecting the hinges A and B; 
BD

1k  is an inflow rate of the kinetic momentum into the rod 

connecting the hinges B and D; 
BDA,

2k  is an inflow rate of the angular momentum with respect to the 

point A into the rod connecting the hinges B and D, and 
ABDA,

2k  is an inflow rate of the angular 

momentum with respect to the point A into the whole rod system. Constitutive relations for reactive 

impacts on a rod system are obtained on the basis of determination 
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In (4) ),(1 ttABin ∆K  is the rectilinear momentum, entering into the open rod AB together with an 

inertia fluid during the time t∆ ; ),(1 ttABout ∆K  is the rectilinear momentum, leaving the open rod AB 

during the time t∆  due to fluid outflow at the point B. 
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In (5) the vector 
s

Av  is an absolute velocity of the inertia substance flow element supplied into the 

open body at the point A; 
s

Bv  is a similar value for the inertial fluid flow element flowing through the 

face end B. For 
s

Av  and 
s

Bv  we have 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 25.-27.05.2016. 

196 

 1111, rΩpvpv ×+== vv s

B

s

A . 

Here eΩ 11 Ω=  is the angular velocity of the rod connecting the hinges A and B. Using (4) we 

find 

 111 rΩk ×−= qAB
. (6) 

The rectilinear momentum, leaving the rod between the hinges A and B, enters into the rod 

connecting the hinges B and D. Thus, 
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The vector irΩvv vB

s

D +×+= 22  is the total flow velocity at the point D, the vector 

eΩ 22 Ω=  is the angular velocity of the rod between the hinges B and D. So for 
BD

1k  the definition 

(4) gives  
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Similarly, for the rate of angular momentum influx we obtain 

 1

2

1

22

0

,

2

),(),(
lim Ω

KK
k ql

t

tttt ABoutABin

t

ABA
−=

∆

∆−∆
=

→∆

 (9) 

 1

2

1

22

0

,

2

),(),(
lim Ω

KK
k ql

t

tttt BDoutBDin

t

BDA
=

∆

∆−∆
=

→∆

. (10) 

For the selected type of inertial fluid leakage from the pipeline 0k ≡ABDA,

2 . 

Let us investigate the existence of the static solutions for (3). For such a solution the conditions 

0=ϕ&  and 0≠v  have to be satisfied. In this case, according to (6) and (9), we obtain 0k =AB

1 , 

0k =ABA,

2 . As the left part of each equation in (3) is equal to zero, we can obtain the following 

relation 
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Using (1) and (7), we get a scalar equation from (11) as follows 
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A rectilinear configuration corresponds to the trivial solution of equation (12), such as 0sin =ϕ . 

Let us verify the nontrivial case, if the term in the braces is equal to zero.  

It is easy to see that 
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. As a result, we get the relationship, connecting the value ofϕ  

and the value of the sum, composed of the auxiliary face end squeezing force P and the recoil force of 

the jet qv . The sum of both forces ensures the existence of the non-rectilinear equilibrium 

configuration of the considered open system in case if the following is true 
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It is evident from (13), that the impact of the auxiliary compressing force P  and the impact of the 

recoil force of the jet qv  are identical.  

The impact of the compressive force on the stability of a rod structure is studied quite well. If one 

assumes 0=P , the open system remains under the compression by the jet recoil force qv , so 

ignoring of this phenomenon is inadmissible. 

Let us evaluate the solution of (12) for 2/21 lll == and small values of ϕ . Suppose that 

2/1cos 2ϕϕ −≈  and ϕϕ ≈sin . In this case it follows from (13) 
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It is obvious, that for small angles stϕ  there exist at least two static configurations of the system 

(Fig. 1) for which (13) is correct. 

Conclusions  

The solvability of (13) proves the equivalence of the compression effect on the open pipeline 

system due to the squeezing by the canonical force P  and the recoil force of the jet qv . It follows that 

the rectilinear equilibrium configurations of the pipeline system with an inertia flow inside (Fig. 1) 

loses the stability in accordance to the classical scenario in case if the recoil force of the jet exceeds 

the critical value of the corresponding compressive face end force. This conclusion may be extended 

on an open segment of any pipeline system. It does not deny the existence of the dynamical scenarios 

for the loss of stability of a pipe system. But the critical squeezing by the recoil force at the face end of 

the open segment has to be considered as one of the main scenarios. Up to now, the stability loss 

mechanism of the pipeline with the flow of incompressible inertia fluid based on the squeezing of the 

pipeline by the jet recoil force has not been discussed widely in literature because of lack of the 

transparent and understandable analytical results. 
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