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Abstract. Self-localization in robotics is still a challenging task for both indoor and outdoor mobile robotic 

systems. The main reason is various sources of sensors and calculation errors that summarizes into a general 

position estimation error. While it is rather common to use some external landmarks to prevent error 

accumulation over time the sensors themselves used for landmark detection are significant sources of 

localization error. Within this paper we discuss one possible implementation of the localization mechanism, 

which uses an on-board camera on top of the robot for ceiling landmark detection and then through appropriate 

calculations estimates the actual position of the robot. While the camera is not set up perfectly and therefore has 

some unknown angular and displacement offset it generates a systematic error in the position estimation data. 

Self-calibration algorithm has to detect and compensate this offset automatically to maintain the necessary 

accuracy of the position estimation. Therefore, we propose an automatic calibration algorithm, which is based on 

spiral motion of the robot for data gathering and multi factor optimization for the error. 
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Introduction 

Use of camera sensors for localization purposes is rather widely discussed and experiences a wide 

spectrum of implementations. The simplest ones are based on color tracking where each of the tracked 

or identified objects is marked by a previously defined color or a combination of color spots [1]. Here 

the main discussion object is proper use of data compression in order to preserve the unique features 

of the colors. In more advanced approaches a 3D vision is employed to produce depth data of the 

environment that allows to replace expensive sensors like Laser range finders by less costly CCD 

cameras. One of such methods is vSLAM (the name comes from Visual Simultaneous Localizations 

and Mapping) proposed by [2], which allows to track distinguished points in environment thereby 

producing robot displacement data necessary for position estimation. Unfortunately, not always use of 

two cameras is affordable due to high memory and computing power demands. Therefore, some 

single-camera alternatives have been developed during the last decade like EKF extended vSLAM 

described in [3]. There are good examples on using lightweight visual SLAM algorithms in 

conjunction with visual recall or visual memory algorithms that allows to embed them into mobile 

computing devices [4]. Another option is to use artificial or natural landmarks that can be considered 

to some extent as a visual memory special case. In this case the system has to identify the landmark 

and use this information for guiding the robot or localize with higher confidence [5]. Usually these 

methods are well suited for indoor systems and can be easily combined with other sensor systems like 

odometric localization sensors [6]. This allows to reduce the overall computation load and simplify 

localization algorithms [4]. However, sensor errors are still actual and need to be addressed. Therefore, 

we propose to use automatic camera calibration that can reduce the localization error through knowing 

the actual camera offset values. 

The rest of the paper is organized as follows: section II describes the used sensors and defines the 

calibration task, its solution and proposed algorithm, section III describes the practical implementation 

on robotic platform and the acquired experimental data, sections IV and V propose conclusions and 

discussions of further work along with a list of the used references. 

Formal definition of the calibration problem 

In the computer vision camera calibration is required to relate the pixel coordinates (rows and 

columns) to the x, y, z coordinates in 3D world. It is common to split the camera parameters in two 

separate groups, intrinsic and extrinsic [7]. The first depends only on the camera itself, like optical 

distortions, sensor displacement etc. They are constant for the given camera and do not change while 

the camera moves [7]. The second includes the position and orientation of the camera coordinate 

frame relative to the world coordinate frame. 
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Intrinsic camera parameters are the image pixel coordinates of the principal point oc, or and focal 

length fx = λ/sx, fy = λ/sy, where λ is the distance between the origin of the camera frame and image 

plane; sx, sy are the image plane horizontal and vertical dimensions [7]. These parameters can be easily 

detected by “chessboard” camera calibration algorithms, like proposed by Zhangs [12] and 

implemented in OpenCV library [8]. 

Extrinsic parameters consist of translation T and rotation R transformations relating the camera 

coordinates to the world coordinates [7]. 

 TRpp wc += , (1) 

where p
c
 – represents the object coordinates in the camera coordinate frame; 

 p
w
 – the same object coordinate in the world coordinate frame. 

In static robotics manipulators these parameters are calculated from kinematics equations of the 

manipulator (eye in hand systems) [10]. In mobile robots the whole body of the robot moves and 

makes it significantly more difficult to separate rotation and translation caused by the body movement 

Rb, Tb from constant rotation and translation caused by the camera placement Rc, Tc on the robot’s 

body. 

A mobile robot usually has more than one sensor for position estimation and appropriate data 

fusion methods are implemented for the final estimate. For obvious reasons it is good to know the 

exact values of variance for more accurate data fusion but usually there is no error-free reference to 

measure it. There are methods allowing some calibration and estimates can be made using appropriate 

mathematical calculations on data gathered during periodic rotation near the reflective object and 

fusing them with IMU (Inertial Measurement Unit) data. As external measurement artificial or natural 

landmarks are used [9]. Others, like the camera extrinsic parameters, are more difficult to obtain due 

to lack of reference measurements. We focus on using artificial landmarks because they provide a 

reliable source of data needed for calibration and are easy to use in practical applications. 

Let us assume that observation of known landmark provides a straight-forward means for robot 

position p calculations. However, in practice the camera has limited resolution, the robot vibrates 

during motion, the camera position and angle relatively to the expected are not matching, etc. All this 

will affect position estimation in terms of disturbances around the true values. Therefore, the actually 

observed or calculated position we assume being a Gaussian variable p = (x, µc, σc
2
), where 

misperception of the camera position and rotation is reflected by variance σ
2
. 

If comparing two position estimates p and g that are calculated from independent sources the delta 

should have zero mean (assuming that the initial position is aligned among alternative position 

sources) and nonzero variance (2). It is not known, which of the sources is responsible for this 

deviation but changing the variance for one of the estimates will change their common variance as 

well.  

 ( ) ( ) ( ) ( )gpCovgVarpVargpV ,2−+=− , (2) 

where Cov(p, g) – covariance of p and g position estimates. 

Assuming that the position estimates are independent, they do not correlate, therefore, their 

covariance is zero  Cov(p, g)  = 0 and this variable can be omitted from equation (3). 

 ( ) ( ) ( )gVarpVargpV +=− . (3) 

The calibration task itself is formulated as a search for the extrinsic parameters EP, which 

minimize the common variance (4). 

 ( )gEPpVarEP EP −= |minarg* , (4) 

where EP* – optimal extrinsic parameters to minimize the equation; 

 p|EP – camera position estimate with known EP; 

 g – alternative position estimate (inertial sensors, odometry). 

From (4) it follows that this is a multi-parameter optimization task, where it is important to define 

constraints and importance of the parameters within the optimization task. 
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The camera as any object in 3D space may have at least 6 degrees of freedom – three rotational 

and three translational [7]. Moreover, the robot location is not known before calibration what gives 

three more variables to find. If one intends to optimize the whole set of the parameters it might be too 

costly in terms of time and computing power for a mobile robot. In the particular implementation let 

us assume then the landmark is located at origin of the world coordinate frame (Fig. 1). The camera 

coordinate frame is attached by a solid link to the robot body and is assumed to be unknown but 

constant. The ground plane and ceiling plane are assumed to be parallel, therefore z = z′ – z″ distance 

between the camera and landmark is constant as well where z″ is fixed z offset of the camera from the 

ground frame. The robot moves on the ground plane and its body has only one rotational degree (roll), 

and two movement degrees (x, y) of freedom, therefore, for the location task the camera yaw, pitch 

and z offset have indirect influence. Camera x offset dxc and pitch θ together with z distance 

summarize to single offset dxr = f(dxc, θ, z) in the robot coordinate frame (Fig. 1). Identically camera y 

offset dyc and yaw ψ together with z summarize to single offset dyr = f(dyc, ψ, z). As all arguments are 

constant, it is assumed that dxr := const and dyr := const making the optimization task much simpler as 

we can directly focus on finding dxr and dyr instead of five other parameters. 

 

Fig. 1. Coordinate frames and main parameters explained 

Unfortunately, the required offsets cannot be calculated from a single set of measurements, as 

there is not known the initial robot position in the ground plane. Several independent measurements 

should be made, therefore the robot cannot be in fixed position during calibration. Trajectory for the 

calibration must be chosen to observe the landmark from different angles and positions (it is common 

for most camera calibration procedures) [12; 13]. 

Moreover, each measurement has its own error, where the camera has normal error distribution 

whereas odometry has “banana distribution” [15]. As it is known, the odometry error accumulates over 

time and its distribution depends on the trajectory chosen [14]. If the robot moves straight (Fig. 2. a), 

the odometry error distribution does not satisfy Chi-square test against normal distribution (hypothesis 

was tested in simulated environment with 5 % significance level). To solve the proposed optimization 

task (4) the trajectory should be chosen to satisfy Chi-square test in the same time minimizing 

odometry variance and providing as much as possible unique (in means of position and angle) 

measurements. From another perspective the trajectory should be chosen so that the robot keeps seeing 

the landmark all the time. 

The circle trajectory (Fig. 2. b) satisfies Chi-square test starting from ~180º of the first circle but 

keeping drive by circle will give non unique positions for every loop. Therefore, a more complicated 
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trajectory was chosen. Spiral motion gives a unique position for every measurement, the same keeping 

normal error distribution and the landmark keeps visible long enough to collect the required amount of 

measurements. 

 

Fig. 2. Odometry error distribution: a – in straight movement; b – in circle movement 

Experimental data together with dxr, dyr variation over some offset interval show that the error 

surface (Fig. 3) has only one extreme. Therefore, gradient descent or a similar method can be used to 

obtain the optimal offset values [11]. 

 

Fig. 3. Numeric calculation of error surface 

Knowing the most important features of the error surface – a single extreme problem, methods 

that employ random sampling are not necessary. Instead, systematic search algorithms would give 

more confidence of the expected result. Another advantage is time saving during the optimum search 

while g position estimate accumulates error over time during the search itself. 

The proposed algorithm can be described as a pseudo code function FIND-EXTRINSIC (Fig. 4) 

where arguments are odometry and landmark traces together with three configurable parameters. The 

first parameter ε represent search stopping threshold. The second parameter α limit meaningful range 

to find parameters and third s is search step. According in experimental part 0.01, 0.5 and 0.025 values 

were used. 

Sub function CALCSTD (Fig. 5) takes as arguments odometry and landmark traces, project data 

to common time axis by piecewise linear interpolation and calculates the resulting variance between 

independently obtained positions. 

a) b) 
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function FIND-EXTRINSIC (Ot,Lt,ε,α,s) return Extrinsic 

 inputs:  Ot odometry and Lt observed landmark traces 

  ε min value change to stop search 

  α max meaningful delta to search within 

   s step value 

  local: EXT[i] n-attribute extrinsic 

  Vmin, Vmax attribute min-max values 

  Vmid atribute middle value 

  Vprev attribute previous value 

 for each index i in EXT do 

  Vmin ← – α; Vmax ← α; Vmid ← 0; Vprev ← α  

  while |Vmid – Vprev| > ε  

    EXT[i] ← Vmid + s; ε1 ← CALCSTD(Ot,Lt,EXT) 

    EXT[i] ← Vmid – s; ε2 ← CALCSTD(Ot,Lt,EXT) 

   if ε1 > ε2 then Vmax ← Vmid else Vmin ← Vmid 

   Vprev ← Vmid  

   Vmid ← (Vmin + Vmax)/2 

   EXT[i] ← Vmid  

return EXT 

Fig. 4. FIND-EXTRINSIC function pseudo code 

function CALCSTD (Ot,Lt,EXT) return Variance 

 inputs:  Ot odometry trace 

   Lt landmark trace 

   EXT extrinsic values 

 local:  t[i] discretication time points 

  PO[i], PL[i] position estimates arrays 

  δ2 ← 0 variance 

 foreach time t in t[i] 

  PO[i] ← position calculated from interpolated Ot|t 

  PL[i] ← position calculated from interpolated Lt|t,EXT 

 foreach attribute a in P[i]  

  δ2 ← δ2 + std(PO[i][a] – PL[i][a]) 

return δ2 
 

Fig. 5. CALCSTD function pseudo code 

Practical implementation and experimental results 

For practical implementation a well known vacuum cleaning robot platform Roomba 580 was 

selected. This robot has a pre-set function allowing to clean some small area – spot. In general the 

trajectory follows the spiral pattern that makes it a very convenient choice for experimental purposes. 

The motion pattern is as follows: first the robot moves 20 cm straight, then rotates by 360 degrees and 

then moves 10 cm following the spiral trajectory as depicted in Fig. 6.  

 

Fig. 6. Camera and odometry position estimate during Roomba “spot” action 
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Thereby, as discussed above, the motion pattern is useful for automatic calibration. However, we 

believe that in general the pattern is rather easy to implement for most of indoor mobile robot 

platforms. In Fig. 6 “glif” is a special ceiling marker (sign recognized by the robot) used for 

positioning. The algorithm is implemented in C++ and runs on Raspberry Pi (RPI), mounted on 

Roomba 580 platform (Fig. 7). 

 

Fig. 7. Roomba 580 with Raspberry Pi add-on 

The landmark detection was performed by RPI camera at 640x480 px resolution at 30 fps rate. 

Each calibration maneuver took ~20 sec, where 16 sec were active data capture for calibration. 

The experimental setup includes four robots where eight calibration traces were made per each 

robot. The robot starting position was changed after each trace. Each robot’s gyro and encoders were 

calibrated once before the experiment and the same values were used for all eight traces. 

Calibration data (table 1) clearly show the difference between the robots. Fig.8. indicates that the 

calculated offset is robot specific and calibration algorithm gives repeatable results. 

Despite the fact that some calibration data were of weak quality because of missing or delayed 

readings, the offset variance is near camera resolution (1 px ~0.5 cm at 3 m). Moreover, bad or 

missing data (temporary light conditions prevent from landmark detection, wheel slip, etc.) can be 

easily detected by the variance found after gradient descent algorithm. If the value is too high the robot 

can automatically repeat calibration instead of using lower quality values. 

Table 1 

Experimental calibration results 

Robot name Trace id dx, m dy, m var 

red 1 -0.0955 -0.1950 0.0131 

red 5 -0.0922 -0.1965 0.0121 

red 2 -0.0990 -0.1970 0.0161 

red 6 -0.0948 -0.1970 0.0126 

red 3 -0.0988 -0.1965 0.0172 

red* 7 -0.0703 -0.1913 0.0702 

red 4 -0.0932 -0.1945 0.0113 

red 8 -0.0850 -0.1930 0.0156 

blue 1 -0.0167 -0.1210 0.0171 

blue* 5 -0.0373 -0.1218 0.0664 

blue 2 -0.0255 -0.1192 0.0264 

blue 6 -0.0170 -0.1230 0.0358 

blue 3 -0.0145 -0.1205 0.0211 

blue 7 -0.0177 -0.1165 0.0223 

blue 4 -0.0142 -0.1208 0.0160 
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Table 1(continued) 

Robot name Trace id dx, m dy, m var 

blue 8 -0.0197 -0.1198 0.0351 

black 1 -0.1195 -0.0665 0.0197 

black 5 -0.1135 -0.0677 0.0199 

black 2 -0.1208 -0.0697 0.0240 

black 6 -0.1145 -0.0690 0.0247 

black 3 -0.1165 -0.0623 0.0141 

black* 7 -0.0992 -0.1052 0.0846 

black 4 -0.1142 -0.0637 0.0148 

black* 8 -0.1377 -0.0613 0.0989 

white 1 -0.0395 -0.0862 0.0175 

white* 5 -0.0707 -0.0887 0.0657 

white* 2 -0.0653 -0.0870 0.0590 

white* 6 -0.0805 -0.0912 0.0666 

white 3 -0.0385 -0.0810 0.0181 

white 7 -0.0553 -0.0870 0.0427 

white 4 -0.0347 -0.0840 0.0143 

white* 8 -0.0792 -0.0872 0.0741 
* Some bad or missing data in trace 

As it seen from the experimental results (Fig. 8), the extrinsic parameters are robot specific and 

therefore must be calibrated at least once when deploying the robot to its workspace. However, any 

robot collisions, work in high physical stress environment, transportation, vibration, maintenance etc. 

can cause offset changes and therefore the authors recommend to recalibrate the robot periodically. 

 

Fig. 8. Detected camera offsets, where size represents calibration variance 

Conclusions and future work 

The proposed auto calibration algorithm provides an affordable method (from time and memory 

prospective) to reduce a systematic error of self-localization caused by imperfect camera set for 

applications where the ceiling markers are used for indoor mobile robot position estimation. The 

conducted set of experiments shows that the proposed algorithm reveals specific offsets for each of the 

used robots thereby providing the necessary data to reduce the overall position estimation error. 

Another important aspect proposed here is use of the spiral motion pattern for calibration data 

gathering, what helps to eliminate errors caused by the motion pattern symmetric properties or 

reoccurrence during calibration. While the spiral pattern is more complex than quadratic or circular 

patterns, it is still rather straight forward to implement for most of the indoor mobile robot platforms 

or use the ones implemented by the robot producers like iRobot’s Roomba vacuum cleaners have. 
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At the moment we use dedicated ceiling markers for calibration purposes but for the future we see 

it possible to extend the algorithm for fully autonomous calibration and use of an arbitrary object in 

environment that can be recognized by the robot. Thereby, the algorithm will have wider application 

extending the application to outdoor mobile robots as well. 

At the same time our intention is to extend the application to any camera used by the robot, but 

this will introduce more unknown variables and might require more complex optimizations with risk 

to lose its practical value for embedded robotic systems due to time and memory requirements. 
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