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Abstract. Solving of parabolic partial differential equations (PDE) is closely connected to many practical studies 

of mathematical physics, environmental science, chemistry, etc. – modelling of heavy metal distribution in peat 

layer’s block; solving heat transfer problems in multilayer environments. Despite the current great capabilities of 

software, the development of accurate and effective numerical technique algorithms is still ongoing, particularly 

in areas 2-D and 3-D involving periodic boundary conditions (PBC). The solutions of some linear and nonlinear 

problems for parabolic type equations and systems with (PBCs) are obtained using the method of lines (MOL) to 

approach the partial differential equations (PDS) in the time and discretization in space applying the finite 

difference scheme (FDS) and the finite difference scheme with the exact spectrum (FDSES). As an application of 

the described mathematical models the 3-D diffusion problem of peat block is solved. The FDS method in the 

uniform grid is used to approximate the differential operator of the second and the first order derivatives in the 

space, using multi-point stencil. The solution in the time is obtained analytically with continuous and discrete 

Fourier methods and numerically, using MATLAB. 

Keywords: analytical solutions, circulant matrices, finite difference schemes, Fourier series, heat transfer 

equations, linear and nonlinear systems. 

1. Introduction 

A periodic function y = f(x), having a period L, can be represented as f(x + L) = f(x).  

In the 2-D problem which depends on time t, the second argument t is not discretized and the method 

of lines (MOL) is used to solve such problems with given initial conditions at t = 0.  

In the source [1] the finite-difference scheme (FDS) for local approximation of periodic function’s 

derivatives in a 2n + 1 point stencil is studied, obtaining higher order accuracy approximation. This 

method in the uniform grid with N mesh points is used to approximate the differential operator of the 

second order and the first order derivatives in the space, using the multi-point stencil. 

It is shown that the eigenvalues of FDS matrix representation A can be obtained as a sum whose 

terms do not depend on n. This allows easily solving FDS by the spectral decomposition of A.  

In recent decades, parabolic partial equations have been intensively developed, as many researchers 

have used them in chemistry, biology, etc. Periodic semi-linear parabolic partial equations are interesting 

because they can explain the seasonal variation of the phenomena seen in the models [2-4]. 

The described methods are applicable for solving of various problems of mathematical physics 

involving periodical functions and periodic boundary conditions (PBCs), for example, the 3-D diffusion 

problem of peat block [5], the 2-D problem for the system of magnetohydrodynamic (MHD) equations 

along with the heat transfer equation for the viscous electrically conducting incompressible liquid-

electrolyte by moving between infinite cylinders placed periodically [6; 7], the method for representing 

periodic functions and enforcing exactly PBCs for solving differential equations with deep neural 

networks [8], the novel discrete differential operators for periodic functions of one and two-variables 

[8; 9]. 

The solutions of some problems of partial differential equations (PDE) with PBCs are obtained, 

using the method of lines (MOL) to approach PDEs in the time and for discretization them in the space, 

applying FDS of a different order of the approximation and the finite difference scheme with FDSES. 

Here the FDS method in the uniform grid is used to approximate the differential operator of the 

second order and the first order derivatives in the space, using the multi-point stencil. The solution in 

the time is obtained analytically with continuous and discrete Fourier methods and numerically, using 

MATLAB solver “ode 15s”, “pdepe”. 
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2. Materials and methods 

In the chapter 2.1 a multi-point stencil for local approximation of periodic function derivatives, as 

the theoretical basis for performing numerical experiments, is studied.  

PDEs and heat transfer equations with convection are widely represented in mathematically 

oriented scientific fields such as physics and engineering. For example, they underlie today’s scientific 

understanding of heat, diffusion, convection, thermodynamics and fluid dynamics. 

It should be noted that it is in many cases more difficult to analyse heat transfer by convection 

(create a Math Model, run numerical experiments, interpret the results obtained) compared to heat 

transfer in a particular material (environment) [6; 11]. 

Being based on the theoretical and practical possibilities of mathematics applications we study the 

following PDEs- heat transfer equations with convection (chapters 2.2-2.8): 

1. linear heat transfer equation (1) is given in chapter 2.2, solution with the Fourier method (chapter 

2.3) and the corresponding discrete method FDS and FDSES (chapter 2.4) [10; 11] for solving them 

are studied;  

2. linear system of heat transfer equations (5) is given in chapter 2.5 and the corresponding solution 

with the Fourier method (chapter 2.6) with its matrix form (chapter 2.7) is considered;  

3. nonlinear system of heat transfer equations (8) is given in chapter 2.8, its discrete solution in matrix 

form is obtained numerically. Since the exact solution of the equation (8) cannot be found, the 

changes in the maximum and minimum values of the found numerical solutions are compared 

depending on the parameters used. 

Possible uses of equations (1), (5) and (8): combustion processes (plaster plates, wheat straw 

pellets); reaction-diffusion equations for the combustion process, such as a nonstationary and nonlinear 

physical model for chemical reaction with temperature and with reaction-diffusion equations; nonlinear 

heat transfer equations [11]. 

There is an increasing number of researches into the environmental impact of various sources of 

natural origin – atmospheric deposits, soil dust and aerosols, surface drainage water, as well as 

anthropogenic sources – atmospheric particles, wastewater, industrial emissions, etc. 

Although some heavy metals (e.g. Fe, Ca), which are part of trace elements, play an important role in 

the world of plants and animals, their high concentrations become dangerous for any form of life. 

Chapter 4 therefore studies the distribution of concentrations of metal Ca in the peat block by 

solving the 3-D initial boundary value problem for PDEs (10) with PBC in two directions.  

2.1. Multi-point stencil for approximate differential operator of the second and the first order 

derivatives 

We start with describing methods for higher order accuracy approximation of a smooth from the 

space C2n + 2[0, L] function in an interval [0; L]. Consider the uniform grid xj = jh, j = N,0 , Nh = L. Let 

n be natural number, satisfying 2n + 1 ≤ N. 

PBCs allows to freely increase approximation order by increasing the stencil of grid points. In the 

case of 2n + 1 point stencil we have to use additional conditions of periodicity ur = uN + r, r  [–n, n]. 

This way algorithms with higher order precision FDS can be obtained. 

Similarly [1], we use multi-point stencil  to approximate derivatives of the second and the first order 

respect to space argument x, (u′, u″) in the uniform grid.  

We consider the finite difference approximation for the second order derivative –u″(xj) using the 

uniform grid xj = jh with 2n + 1 points stencil (xj-n,…xj-1,xj,xj + 1,…,xj + n). 

 Then we have O(h2n) order of approximation in the following form: 
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and to determine the other coefficients Cm, (m > 0), we get the system of linear algebraic equations with 

the Van-der-monde matrix: 
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In this case the finite difference matrix A for the second order derivative approximation –u″(xj) is 

circulant N order matrix in the form [11]. 

  121102
,,...,,,0,...,0,,...,,

1
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The eigenvalues of the matrix A are [1] 
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Using the first derivative u′(xj) for the higher order approximation O(h2n) we have the following 

circulant matrix representation: 
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2.2. Heat transfer eq8uation with convection 
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With the periodic boundary conditions 
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where K0 – const > 0, P0 = const > 0 are real coefficients;  

 T(x,0) = T0(x), f(x,t), T0(x) – initial condition – periodic functions with the period L, 

 tb – final time. 
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2.3. Solution with Fourier method 

We can use the Fourier method for solving the initial-boundary value problem in the form 
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Then for the unknown functions  get the complex initial value problem for ODEs of the first 

order: 
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The solution of (2) is 
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The solution with the Fourier method can be obtained in real form 
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Therefore, the solution is in real form: 
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where the coefficients akc(t), aks(t) can be obtained from the following initial boundary value 

problem of the system of two ODEs: 
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2.4. Discrete method 

For the discrete problem we have the system of N ODEs in the form 

 ( ) ( ) ( ) ( ) ( ) 0

0
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where  A, A0 – 3-diagonal circulant matrices of N order, with the eigenvalues μk, μk
0; 

 U(t), U (t), U0, F(t) – column-vectors of N order.  

We can also use the matrix representation A = WDW*, A0 = WD0W*, 

where D, D0 – diagonal-matrices with the elements μk, μk
0, k = N,1 . 

For FDSES we can replace the eigenvalues in the diagonal-matrices in a special way (N2 = N/2) 

[12]: 
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For the column-vector F(t) elements fj(t) we obtain  
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For the solution  
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we need to determine the unknown functions akc(t), aks(t) f the following expressions: 
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and to determine the functions akc(t), aks(t) we obtain the systems of ODEs (3), where the  

eigenvalues λk are replaced with the discreate eigenvalues  
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2.5. Linear system of heat transfer equations 

We consider the linear system of M-heat transfer equation in the following form: 
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with the periodic boundary conditions  

K – positive definite M-order matrix with the elements Msmk sm ,1,,, =  and with different positive 

eigenvalues μk > 0; 

P is the real M-order matrix with the elements Msmp sm ,1,,, =  and with different real eigenvalues 

μP; 

T(x,0) = T0(x),f(x,t),T(x,t),T0(x) – periodic functions column-vectors of the M-order. 

2.6. Solution with Fourier method 

We can use the Fourier method for solving the initial-boundary value problem in the real form: 
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where  akc(t), aks(t) – unknown column-vectors of M-order. 

We obtain the initial boundary value problem for the system of 2M- ODEs: 
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For FDS with  
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we obtain the system of vector-difference equations: 
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We have 2 circulant matrices: 
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which can be also represented in the form A = WDW*, A0 = WD0W*,  

where D, D0 – diagonal-matrices with the elements μk, μk
0, k = N,1 . 

In this form we can consider FDSES. In the real form we have 
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where akc(t), aks(t) – M-order column-vectors.  

2.7. Solution in matrix form 

We can write difference equations in the matrix form 
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 are defined with Kroneker-tensor product; 

 u(t), u(0), f(t) – MN column-vectors with the elements 
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For real representation we can use 

 

,cossin,sinsin

,sincos,coscos

00

00

kkkkkk

kkkkkk

AA

AA





==

−==
 

where  sink, cosk – N-order vectors with the elements 

 
N

kj

N

kj  2
cos,

2
sin . 

We have orthonormed conditions 
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N

j

N

j kkkk

N

j kk

N
,1 11 2

coscossinsincossin ===  = ==
. 

Then for fixed frequency k of oscillations the solution can be found in the form 
 ( ) ( ) ( ) kcks tdtdtu cossin +=  

where ds(t), dc(t) – unknown vector-functions of the time. 

Then  

 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( ).sincos

,cossin

,cossin

00

kcksk

kcksk

kcks

tdtdtuA

tdtdtAu

tdtdtu

−=

+=

+=







 

2.8. Nonlinear system of heat transfer equations  

We consider the nonlinear system of M-heat transfer equation in the following form: 

 
( ) ( )( ) ( )( )

( )( )txTg
x

txTg
P

x

txTg
K

t

txT
,

,,,
3

2

2

1

2

+



+




=




  (8) 

with the periodic boundary conditions, g1(T) = Tα, g2(T) = Tβ, g1(T) = Tγ are the power functions. 

The discrete equations are in the form 

 ( ) ( ) ( ) ( ) ( )tuAPtuAKtu  0+−=   (9) 

3. Results and discussion 

In the present chapter we have solved the heat transfer equation (1) and the discreate form (4), the 

linear system of two heat transfer equations (5) and the nonlinear system of two heat transfer equations 

(8) for fixed parameters. Also, as an example according to the above mentioned theoretical guidelines, 

we have solved the 3-D diffusion problem of peat block. 

3.1. Results for linear system of ODE (4) 

For (1) and (4) we consider the following parameters:  

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

.105,1,0

2cos2sin,

2cos2sin,1,5,2

2121

21

21000

−==−==

+=

+==−==

ABB

xtAxtAxtf

xBxBxTLPK





 

The solution is in the form  

 ( ) ( ) ( ) ( ) ( )xtdxtdxtu  2cos2sin, 21 +=   

and we obtain 2 ODEs: 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )




=+−−=

=+−−=

222102

2

02

111201

2

01

0,24

0,24

BdtAtdPtdKtd

BdtAtdPtdKtd








 

or in the system  

 ( ) ( ) ( )tGdtAdtd += , for vectors d(0), G(t) 

with the coordinates B1, B2; A1(t), A2(t) and matrix 

 














−

−−
=

2

00

0

2

0

0
42

24





KP

PK
A . 

This system can be solved by MATLAB solver “ode15s”. 

We obtain the discrete solution from (4), where U0, F(t) are the N-order column-vectors with the 

elements B1sin(2πxj) + B2cos(2πxj) and A1(t)sin(2πxj) + A2(t)cos(2πxj).  
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We obtain the following maximal errors for N = 10 depending on the approximation order of 

derivatives u″(x), u′(x): 0.0050(O(h2)), 0.0039(O(h4)), 2.3·10-5(O(h6)), 1.8·10-6(O(h8)), 2.5·10-8(FDSES). 

It is seen that the maximal error in using the FDS method (1.8·10-6) is two order higher than the 

FDSES method (2.5·10-8). In Fig. 1 we can see the solution u(t,x) by N = 10, with the periodical 

conditions by x = 0, x = 1 and maximal value u(0.5,0) = 1, u(0.5,t) = –d2(t) > 0. 

 

Fig. 1. Solution u(t,x) by N = 10 

3.2. Results for linear system of two heat transfer equations (5) 

We have an example: M = 2, L = 1, tb = 0.1, T0
1(x) = B1,1sin(2πx) + B1,2cos(2πxj), 

T0
2(x) = B2,1sin(2πx) + B2,2cos(2πxj), f1(x,t) = A1,1(t) sin(2πx) + A1,2(t) cos(2πx), f2(x,t) = A2,1(t) 

sin(2πx) + A2,2(t) cos(2πx), B1,1 = 0, B1,2 = 1, B2,1 = –1, B2,2 = 0, A1,1 = 5, A1,2 = 10, A2,1 = –10,  

A2,2 = –5, and we can consider 2 matrices 

 




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





=








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


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2,21,2

2,11,1

2,21,2

2,11,1 ~
,

~

AA

AA
A

BB

BB
B . 

Matrices 

 









−

−
=









−

−
=

41

52
,

41

32
PK  

with the eigenvalues λK = (1;5), λP = (1;–3). 

We find the solution in the form 

 T1(x,t) = d1,2(t)sin(2πx) + d1,2(t)cos(2πx), T2(x,t) = d2,1(t)sin(2πx) + d2,2(t)cos(2πx), 

then we obtain 4 ODEs for solving the coefficients d1,1, d2,1, d2,1, d2,2: 

 ( ) ( ) ( ) ( ) 02 0, ddtFtdAtd =+= ,  

where the matrix 

 














−

−−
=

KP

PK
A

2

2

2
42

24




, 

4-order column-vectors are 

 d = (d1,1, d2,1, d2,1, d2,2)
T, d(0) = (B1,1, B2,1, B2,1, B2,2)

T, F = (A1,1, A2,1, A2,1, A2,2)
T. 

We have the following maximal errors for solutions T1, T2 (Table 1): 
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Table 1 

Maximal errors for solutions T1, T2 

Max. 

errors 

FDS 
FDSES 

O(h2) O(h4) O(h6) O(h8) 

N = 10 N = 20 N = 10 N = 20 N = 10 N = 20 N = 10 N = 20 N = 10 N = 20 

T1 0.0071 0.0017 0.0113 0.0028 8.3·10-6 0.0016 5.6·10-8 2.1·10-7 5.3·10-8 9.9·10-8 

T2 0.0032 0.0008 0.0043 0.0011 8.5·10-6 0.0006 6.1·10-7 2.6·10-7 2.0·10-8 9.6·10-8 

The maximal error using the FDS method, with increasing the number of grid points (from N = 10 

to N = 20) under orders  O(h6) and  O(h8), increases, while using the FDSES method, increasing of N 

does not change the error’s round. 

In Fig. 2-4 we can see the matrix coefficients d(t) depending on t and the solutions depending on x 

and t (in Fig. 2 the coefficients tend to stationary solution already by t = 0.1; in Fig. 3, Fig. 4 we can see 

different behaviour of the solutions u1 and u2).  

  

Fig. 2. Matrix coefficients d(t)  

depending on t, N = 20 

Fig. 3. Solution T1(x,t) 

 

Fig. 4. Solution T2(x,t) 

3.3. Results for nonlinear system of two heat transfer equations (8) 

For equation (8) we have following maximal (Mv1, Mv2) and minimal (mv1, mv2) values of solutions 

v1 = u1, v2 = u2 for M = 2, tb = 10 depending on t (Table 2): 

1. α = β = 3, γ = 2 (in Fig. 5 we have symmetric, periodic oscillations in the space, the solution is 

stationary). 
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Table 2 

Max-min values of ± u1, ± u2 

Max-

min 

values 

N = 40 N = 80 

FDS 
FDSES 

FDS 
FDSES 

O(h2) O(h4) O(h6) O(h8) O(h8) 

 ± u1 0.17752 0.17755 0.17686 0.17715 0.17715 0.17723 0.17723 

 ± u2 0.10843 0.10847 0.10791 0.10822 0.10822 0.10827 0.10827 

We can see that with increasing of an accuracy of the solution, it tends to constant values – 

u1 = ± 0.17723, u2 = ± 0.10827, using both studied methods. 

2. In Fig. 6 we can see results by α = β = 3, γ = 2, L = 3, N = 80 (solution slowly tends to stationary, 

only by t = 20). 

3. In the next Fig. 7, Fig. 8 there are represented results by α1 = 5, α2 = 3, β = 3, γ = 2, L = 3, N = 40, 

tb = 5 for 0.1∙K with eigenvalues (0.1; 0.5), where g1(T) = [T(α1), x[1,N], T(α2), x[N + 1,2N]]. 

We can see the oscillations in time (in Fig. 7 there are solutions v1, v2 by t = 5). We obtain the 

following maximal values u1, u2 depending on n = 1,2,3,4 and for FDSES: 1.5461; 0.9288, O(h2), 

1.4914; 0.8911, O(h4), 1.5061; 0.8969, O(h6), 1.4919;0.8894 O(h8), 1.5081; 0.8945 (FDES). 

It can be seen that, with increasing the precision (order O(h8)), the solution with the FDS method 

tends at a solution obtained by the FDSES method with error approximately 1.2% (u1), 0.6% (u2). 

  

Fig. 5. Solutions by tb = 10, N = 40  

depending on x 

Fig. 6. Maximal and minimal values 

depending on t, L = 3 

  

Fig. 7. Solutions by tb = 5, L = 3  

depending on x 
Fig. 8. Maximal and minimal values 

depending on t 
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4. Solution of 3-D diffusion problem of peat block 

In [5] the concentration of metals Fe and Ca in the layered peat blocks is investigated. Using the 

experimental data, the mathematical model for calculation of concentration of metals in peat layers are 

developed. It is necessary to solve the 3-D boundary-value problems for PDEs with periodical boundary 

condition in one (x) direction. 

We develop here a method for solving of a problem of one peat block with periodical boundary 

condition in two (x, y) directions. 

The process of diffusion is considered in 3-D parallelepiped 

( ) zyx LzLyLxzyx = 0,0,0:,,  

We will find the distribution of concentrations of metals Ca in the peat block c = c(x,y,z,t)  

by solving the following 3-D initial boundary value problem for partial differential equation 

(PDEs): 

 

( ) ( ) ( ) ( )
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( ) ( )
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 (10) 

where  Dx, Dy, Dz – the constant diffusion coefficients; 

 α – constant mass transfer coefficient at z = 0; 

caz(x,y), c0z(x,y), c0(x,y) – given concentration on the boundary z = 0, z = Lz and at the time 

t = 0; 

 tb – final time, in x and y direction we have periodical BCs. 

We consider the solution in the following form: 

 c(x,y,z,t) = C(z,t)f1(x)f2(y),caz = Cazf1(x)f2(y),c0z = C0zf1(x)f2(y),c0 = C0f1(x)f2(y),Lx = Ly = 1, 

where  f1(x) = a1(sin(2πx) + cos(2πx)), f1(x) = a2(sin(2πy) + cos(2πy)), 

Then we have following 1-D initial boundary value problem in z-direction:  
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 (11) 

where  
( )

z

yx

D

DD
a

+
=

2

2

0

4
. 

Using a uniform grid with the number of the grid points Nx = Ny = 10, Nz = 20 we can define the 

finite difference matrix A of Nz-order and solved the discreate ODEs system (11) by MATLAB routine 

“pdepe”.  

The numerical results are obtained for [5]:  

tb = 6 s, Caz = 4.63 mg·m-3, C0z = 1.13 mg·m-3, α = 200 m·s-1, Dz = 10-3 m2·s-1, Lx = Ly = 1 m, Lz = 3 m, 

Dz = Dy = 3·10-4 m2·s-1, a1 = a2 = 0.1, C0 = ((Caz – C0z) · z/Lz) + C0z. 

The stationary solution C(z) for (11) we can obtain also analytically by solving the following 

boundary-value problem for ODEs of second order: 
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The solution is C(z) = A1sinh(a0z) + A2cosh(a0z), where  
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There are represented the stationary solution C(z) (Fig. 9), and the solution depending on t, z 

(Fig. 10).  

Changes of concentrations have similar characters – concentrations of Ca very fast decrease with 

the depth increasing from 4.63 to 1.13 mg·m-3. Major concentrations of heavy metals are observed at 

the top layers of peat. 

 
 

Fig. 9. Stationary solution C(z) Fig. 10. Nonstationary solution C(t,z) 

Conclusions 

1. For higher order of approximation in space the differential operators multi-points stencil is used: 

for the second and first order derivatives with approximation O(h2n), with N grid points and with 

2n + 1 ≤ N points stencil, circulant N-order matrices and eigenvalues are obtained. 

2. The considered methods illustrate the simplicity and flexibility of finite-difference schemes: FDS 

with higher order approximation and FDSES with exact spectrum. For linear equations, regardless 

of the number of grid points, the FDSES method yielded a more accurate solution than the FDS 

method - the order of maximal error for equation (1) using the FDS method is two times higher than 

the FDSES method. 

3. For linear system equations (5) the maximal error using the FDS method, with increasing the 

number of grid points N, increases, while using the FDSES method, increasing of N does not change 

the error’s order (see Table 1). 

4. For nonlinear system equations (8) with increasing of an accuracy of the solution, the maximal and 

minimal values of solutions tend to constant values using both studied methods (see Table 2). It can 

be seen that, with increasing the precision of FDS, the solution with the FDS method tends to a 

solution obtained by the FDSES method with error approximately 1.0%. 

5. The effectivity of above-mentioned methods – FDS and FDSES for PBC is obtained by using 

circulant matrices, which simplified computational algorithms, and thus allowed a significant 

reduction in the amount of calculations to be performed. 

6. MATLAB routines “ode15s” and “pdepe” were used for solving linear and nonlinear systems of 

parabolic type equations, which allowed to obtain the solutions of 1-D stationary and nonstationary 

boundary value problems. 
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7. 3-D diffusion problem of metal concentration in the peat block with PBC (10) is reduced to 1-D 

initial boundary values problem (11) using two fixed functions in x, y directions. Numerical 

experiment, using MATLAB routine “pdepe”, showed that the nonstationary solution (depending 

on (z,t)) of the above mentioned 1-D problem tends to its stationary solution (depending on z). It 

provides new information for further studies on the performance of measurements of heavy metal 

concentrations in peat. 
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